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Positional differential games of pursuit with target for-conflict-control systems, non-linear with respect to the phase vector, are 
considered. The problems investigated are approximate construction of the set of positional absorption and construction of control 
procedures guaranteeing guidance to the target. Issues relating to the development of algorithms for the approximate construction 
of the positional absorption set and control-with-guide procedures [14] are also examined. As an example to illustrate the 
possibilities of the algorithms considered, a pursuit game of the Homicidal Chauffeur type [5] is considered, with approximate 
computation of positional absorption sets in the problem of pursuit over a fixed time interval for several parameter sets. Motions 
of a conflict-control system that generate a control-with-guide procedure are computed for several specific initial values of the 
phase vector and several choices of the evader’s control. 0 2002 Elsevier Science Ltd. All rights reserved. 

The present study is related to the research reported in [l-141.$ 

1. FORMULATION OF THE PROBLEM 

Consider a conflict-control system described in a time interval [to, 191 by a vector differential equation 

drldt = F(t, x; u, u) (1.1) 

F(t, x; u, u) =j@, x) + B(t, x)u + C(t, x>v; u E P, u E Q 

where x is the phase vector of the system, which is a vector in the Euclidean space R”, and u and v are 
the first and second players’ control vectors, which satisfy the inclusions indicated in (l.l), where P and 
Q are convex compact polyhedra with a finite number of vertices in Euclidean spaces Rp and R4, 
respectively. 

It is assumed that the following conditions are satisfied 
A. The functionsf(t,x), B(t,x) and C(t,x) are continuous jointly in their variables (t,~) in the domain 

[to, 131 x R”, and for any bounded closed domain D (D C [to, 61 x R”) Lipschitz constants L< = L(D) 
(< = f, B, C) in (0, -) exist such that 

llr(t,x”‘)-T(t,x’2’))I~ Q))x(‘)-x(~)I~ C= f,B,C 

for any (t,J’)) E D, (i = 1, 2). 

(1.2) 

B. A constant 2 in (0, -) exists, such that, for all possible (t, X, U, u) E [to, 61 x R* x P x Q, 

11 Ftt,x;w )]I g %I +1/x/j) (1.3) 

The problem of pursuit facing the first player will be considered in two versions. 
1. It is required to construct a positional mode of pursuit guaranteeing that the motionx(t) of system 

(1.1) will reach, at time 6, a given compact target set M in R”. 
2. It is required to construct a positional mode of control guaranteeing that the motionx(t) of system 

(1.1) will reach, in the time interval [to, 61, a given compact target set M in R”. 

tPrik1. Mat. Mekh. Vol. 66, No. 2, pp. 228-237, 2002. 
$See also: GUSYATNIKOV, P B., A pursuit-evasion problem in the theory of differential games. Doctoral dissertation, 

Sverdlovsk, 1981 

215 



216 V. A. Vakhrushev and V. N. Ushakov 

2. THE CONSTRUCTION OF THE POSITIONAL ABSORPTION SET 

The positional modes of control considered below, which solve the pursuit problem, are positional 
control-with-guide procedures. The construction of controls in control-with-guide procedures makes 
essential use of positional absorption sets. It is well known that positional absorption sets may be defined 
on the basis of retrograde procedures [l]. 

Definition 1.1. Au-stable absorption operator z(t*; t*, W*) (ta C t* < t* < 6, W* C R”) is defined 
as the mapping n(t*; t*, .) : 2Rm + 2Rm given by 

7t&$;r*, W’) = fl J$ (t,;t’, w*) 
UEQ 

Xv(f.;f*,W*)=(x,~Rm:W*nX,(r’;r,,x,)~O) 

where X,(t*; t*, x*) is the set of all points in Rm which are reached at time t* by solutions 

x(.) = (x(t): I* C t C I ( X(L) =x*) 

of the differential inclusion 

A E F, 0,x), F, (LX) = F&x; P,u) 

B(t, x)P = (B(r, x)u: u E P) 

The positional absorption set @ for Pursuit Problem 1 may be defined [l, 31 as the largest closed 
set WC [to, 191 x R” such that 

W(Q) C M, W(r*) c 7t&; f, W(t*>) 

(W(r) = (x E R”‘: (t, x) E W)) 

for any t*, t*(ta < t: < t* C 6). 
By definition, I@ is the set of all positions (t., x*) E [to, 61 x R” from which Pursuit Problem 1 is 

solvable. Exact computation of such subsets of the position space is possible for only the simplest classes 
of systems (1.1). 

For the general case of systems (l.l), retrograde algorithms have been developed for approximate 
construction of the set I@. These are discrete-time algorithms that compute a certain system of subsets 
of R” approximating the set l@. 

The concept of an approximating system of sets arises when the continuous u-stability scheme is 
replaced by a discrete scheme. One introduces a partition I = {to, tt, . . . , tN = 6) of the segment [to, 
61 and replaces the reachable domains X,(t*; t*, x*) by time-linear approximations. 

Definition 1.2. An approximating u-stable absorption operator Z(t.; t*, W*) (to s t. c t* G 6, 

W* C R”) is a mapping ii(t.; t*, :) : 2Rm + 2Rm defined by 

it(r*;t*, W’) = /-j X” (t,;t’, W’) 
VSQ 

where 

(t* -t*)F, (LX,)= (a E Rm :a = (t’ -t,)b,b E F, (t.,x,)) 

An approximating system of sets (ASS) is defined on the basis of the concept of an approximating 
u-stable absorption operator. But before proceeding to the actual definition of an ASS, we will introduce 
some auxiliary quantities: 



A computer realization of control-with-guide procedures 217 

~J+A) = I,r):(,~)~~~,+,~,,~li(‘+A~x)-r(~~xfII 
v * * * 

K= (, x u”yJ~xpxll F(t~x;W )I1 
1 ? , 

K, = y$lul, K2 = rey 11 u IL K, K, , K2 E lo,=) 

o*(A) = q(A)+ K,o,(A)+ K,w,(A) 

h* = Lr -t K,L, + KzLc ~10,~) 

a’(s,r)=O*(@+h*r, aao,rao 

h= Kh’, x(A)=o*(A)+M (Aa 0) 

Letting p(F*, F*) denote the Hausdorff distance between F. and F*, we conclude that in the problem 
under consideration the following condition holds 

for any (t, x*), (t, x*) in D, u E Q, and moreover 

for any (t*, x.), (t*, x*) in D, u E Q. Therefore, by the scheme of [4], one obtains a rigorous definition 
of an ASS: 

Definition 1.3. An approximating system of sets { m(tJ : ti E r> is defined as a system for which 

*‘(r,v) = M+, , ~(t;)=~(ti;ti+,,l?l(fi+,)), i=N-l,..., 0 

where the number Ed is found from the recurrence relations 

Ai = ti+l -ti,ti d-;co(A)=M*(A,KA)=Ad(A)+A*KA* 

The symbol aE denotes a closed:-neighbourhood of the set a,. 
By Theorem 1 of [4], an ASS { W(Q) : ti E r} converges as the diameter of the partition A(r) approaches 

zero to a positional absorption set Wa. Consequently, the set Wa can be computed approximately as 
a system of sets {I@,) : ti E I?}. In addition, considering some sufficiently fine mesh SC”) = {u,: uY E 
ap,v= I,..., k} such that coS@) = P, and also S(“) = {u,: U, E aQ, o = 1, . . . , n}, of vertices of the 
polyhedron Q, we conclude [4] that the sets W(ti) (i = N, . . . , 0) can be computed approximated by the 
formulae 

w=l y=l (2.1) 
i = N- 1, ..,, 0 

where 

i@ is a polyhedron in Rm with a finite number of vertices, approximating the target set M. 
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It is known that if w(ti+i) is a polyhedron with a finite number of vertices, then the set _%&(fi; ti+i, 
W(ri+,)) will be, to a known degree of accuracy, a polyhedron in R" with the same number of vertices. 
The vertices of the polyhedron X&ti; ti+l, W(ti+i)) are computed, given the verticesx[ti+i] of W(ti+i), 
from the equation 

The solution of this equation may be found by successive approximations, to any desired accuracy, 
provided that the numbers Ai are sufficiently small. In some cases, such as that of the Homicidal 
Chauffeur modelgroblem, an exact solution can be found. 

Thus, the sets W(ti) occurring in (2.1) are finite intersections of finite unions of not necessarily convex 
polyhedra with a finite number of vertices in the space R". Unions and intersections of such polyhedra 
in the space R* have been computed for various specific problems on the basis of existing algorithms 

[141. 
An approximate construction of positional absorption sets by approximating systems, analogous to 

the construction described above for Pursuit Problem 1, has also been worked out for Pursuit Problem 
2 [4].t The basic element of the approximate computation of positional absorption sets in this 
construction is the same procedure as is used to compute unions and intersections of polyhedra with 
a finite number of vertices in Euclidean space. 

Thus, when the set M can be represented as a union of spheres of radii bounded below by some positive 
number R*, a system of sets approximating the positional absorption set in Pursuit Problem 2 may be 
given by the relations 

i=N-l,N-2 ,..., 0, 

where {Ed} is some sequence of numbers such that EO = 0 andiyi:; Em + 0 as A(T) -+ 0. 

Just as in the case of Pursuit Problem 1, the sets W(ti) (i = 0 , . . . , N) can be computed approximately 
from the formulae 

i=N-l,N-2,...,0 

where ti is a polyhedron approximating the target set M. 
As in the case of Pursuit Problem 1, a procedure to compute the sets W(ti) (i = 0, 1, . . . , IV) can be 

realized for specific Pursuit Problems 2 in the plane R2. For example, we shall consider below a pursuit 
problem of the Homicidal Chauffeur type. The solution of this problem can be approached by solving 
Pursuit Problem 2 for a suitable conflict-control system over different time segments [to, r]. The pursuit 
problem itself may be solved over a fixed time segment [to, T], at least approximately, using the 
approximating constructions proposed above for Pursuit Problem 2. 

3. CONTROL PROCEDURES 

A convenient positional mode of control for solving pursuit problems is the positional control-with- 
guide procedure [l, 21. One positive property of these control procedures is that the motions they 
generate are stable under small perturbations of the phase vector of the system. Another positive 
property is their simple computer execution, at least, for systems of type (1.1) in a plane. The most 
difficult element in the execution of control-with-guide procedures, namely, the computation of the 
intersection of a bundle of motions with a section of a bridge, may be executed in the two-dimensional 
case using the aforementioned procedures for computing intersections of polyhedra (see [14]). 

tSee also: TAFCAS’YEV, A. M. and USHAKOV, V N., The construction of stable bridges in a minimax game of pursuit and 
evasion. Sverdlovsk, 1983. Dep. at the All-Union Institute for Scientific and Technical Information (VINITI) 5.0583, No. 2454-83. 
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In this section we shall consider positional control-with-guide procedures in which suitable controls 
in actual motion and a guide are chosen on the basis of the idea of copying [6,7]. When that is done, 
the second player’s control in the guide is chosen on the basis of copying with delay. 

Considering Pursuit Problem 1, we shall construct a “solving mode of control” as a positional control- 
with-guide procedure for the first player. We may assume without loss of generality that the motions 
generated by the procedure which reach an s-neighbourhood of the target M must remain in some known 
bounded domain D. This domain D will occur in the subsequent reasoning. 

We shall agree in advance that the auxiliary motion of the guide is constructed as a motion that passes 
through the system of sets approximating the positional absorption set. Accordingly, the solving control 
procedure of which we shall be speaking below will steer the actual motion of system (1.1) not exactly 
to the target M but to an s-neighbourhood of the target. The magnitude of E will depend on the diameter 
A(r) of the partition I’ relative to-which the ASS is considered, and E + 0 as A(I) + 0. 

Thus, assuming that an ASS { W(tJ : ti E r} is given [4], let us define a positional control-with-guide 
procedure for the first player corresponding to the partition I. 

We introduce the following notation 

X,(t) = i F(z,x[21;uk.u(‘5))d’t 

‘k 

Hk =AF(tk,x[tk];uk,vk)+hk 

hk =‘j*l(F(qx[r] ;‘dk, u ‘)- b&,x[tk];u’, u ‘))dz 
It 

u k = + Ikj’u (z)& 

It 

zk = lb[tk] - x[tk]ll, k = 0, . . ., N - 1 

Let x[to] be some point in R”‘. We wish to find the point in the set W(t,), say y[ta], that is closest to 

xPol* 
In the interval [to, tl] we assume that a control for the second player in the guide is given as a vector 

V? E Q,_and a control for the second player as a vector u! E P is then found from the condition 
ykl E Wd, whewPI = YFOI + YoPl. 

We shall refer to the vector functiony[to] in [to, tl] as the motion of the guide. 
The pt player’s control in the interval [to, t,) in the actual system is a vector u” E P defined by 

uo = u*. Let us assume that in the interval [to, t,) in the actual system some measurable control 
v[t] E Q, t E [to, t,) is achieved. Then the motion of the actual system in [to, tl] satisfies the equality 

dtl = a_d + Xobl 

Obviously 

x[t,]=x[to]+HO 

We have the inequality ]]h’]] C Ax(A). 
Now, proceedin by induction, let us assume that in the interval [tk_l, tk) (1 G k c N - 1) we have 

given controls c&9 r&-r, &-I, L+‘(.) as well as the motions of the guide and of the actual system 
y[*](y[tk] E I@(&)), x[.] in [tk+ tk] generated by these controls. We define the controls, motions of the 
guide and of the actual system ~[a], x[.] in the segment [tk, tk+l] as follows. 

The vector V! E Q is found from the condition 
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We have the inequality 

1 AC(t,_,,-#,_,l> u: - ~C(tt-,.~~rk_II)~k-’ 11s 2Ax(A) 

We now define the vector u! E P by requiring that y[tk+r] E w(tk+r), where y[t] = y[t,J + Yk(t), 
t E [tk, tk+r]. Such a vector m,k exists, since y[t,J satisfies the inclusion y[tk] E w(f,J. 

The vector function y[tk] in [tk, rk+r] will be called the motion of the guide. 
The vector uk E P is defined by the equality uk = u!. 
We define the motion of the actual SyStem in [tk, tk+l] by the r&tiOn 

where u(t), t E [tk, fk+r) is the second player’s control thus realized. 
We have the following representation for the point x[tk+r] 

x[tk+ll= ~[~~I + Hk 

We have the inequality ]]hk]] G Ax(A). 
Thus, running through all the numbers k = 0, 1, . . . , N - 1 in succession, we define a positional control- 

with-guide procedure for the first player, corresponding to the partition r. 
We Will now estimate the quantity zk+t at the nodal points fk+r E I- (k = 0, 1, . . . , N - 1) in terms of 

the initial deviation zo. 
The following equalities hold 

k=O, 1, . . ..N- 1 

Hence we obtain 

z~+I ~ Z~ + or ,~ Zi + ~BK, ~ Zi +L\L,K, ~ Z; + 1yt0,(A)K* + ~LcK~, + 
r=O i=O i=O 

+Ak2A~(A)+A~C(fo,x[ro])u.o (I+AKK* +kAx(A) 

k=O,l,...,N-1 

Taking the inequalities kA < 6 - to into account, we obtain an estimate 

k=O, I, . . ..N- 1 

Then 

zI 6 z. + a, + (p(A) 6 e”zO + (p(A) 

z2 s z. + ti(zo + zl ) + o(A) 6 e2Mza + e%p(A) 

Taking these inequalities into account, one can prove that 

Zk =s e uB-ro)Zo + e A’*-‘“‘cp(A), k = O,l,..., N 

4. EXAMPLE 

Let us consider the Homicidal Chauffeur differential game [5]. The pursuer is moving in a plane at a 
hxed velocity wl, in a trajectory whose radius of curvature is bounded below by a positive number R. 
The pursuer controls the choice of the actual value of the curvature of the trajectory at each instant of 
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time. The evader, moving in the same plane, executes a simple motion, with fixed velocity w2. The pursuer 
tries to entrap the evader in a prescribed I-neighbourhood as rapidly as possible. The equations of motion 
in this pursuit game in the reduced space have the form 

i, = -w, R-‘ayp + w2 sin w 

X2=w,R-‘x,(P+w~cos~~w, 
(4.1) 

The players’ controls cp and w satisfy the conditions 

-16cpGl,O<~62n 

Closely connected with this pursuit problem is the problem of the system approaching the target M 
in a fixed time segment [0, T], T E (0, -). To be precise: the isochrones in the pursuit problem are parts 
of the boundary of the corresponding sections of the positional absorption set, and a solving strategy 
in the pursuit problem can be constructed as a control-with-guide procedure or as a strategy extremal 
to the positional absorption set. 

System (3.1) can be replaced by the following system 

XI = -w, R-‘xZu, + w2 v , 

i2 = w,R-‘x,u2 + w2 v2 - wI 
(4.2) 

u=(u,,Ll2)E P,~=@lrY)E e 

p=(u:u,=u2,-1~uI sll,Q=~~:Il~ll~1~ 

Equations (4.2) are non-linear differential equations of the form (l.l), and the algorithms considered 
in the previous sections are applicable. As indicated previously, the algorithms consist of the following 
three main parts. 

1. Approximation of the sets P, Q and M by polyhedra. 
2. Solution of the non-linear equation 

x + (ri+~ - tiF’(ti, X; 5 u J = xs[ti+tl (4.3) 

in each segment [ti, ti+l] of the partition r for different sets of vectors uy, u, and x,[~~+~J - the vertices 
of the corresponding polyhedra approximating the sets P, Q and M. 

3. Construction of intersections and unions of non-convex non-simply connected polyhedra in R2 
(see [ 141). 

To construct polyhedra approximating the sets P, Q and M, one defines meshes on their boundaries. 
The choice of the number of elements in these approximating polyhedra depends on the computational 
resources and on the required precision. 

Incidentally, in this particular game the solution (XI[ti],X2[li]) of Eq. (4.3) can be written out analytically. 
In the general case, how_ver, one has to solve such equations approximately. 

The system of sets { W(ti) : ti E r} was constructed for the following parameter values 

WI = 2.5, W2 = 1, R = 0.5, t = 1, [toI 6]= [O, 21 

r= (f(J=O,t,, . . . . rN=2),A=ti+l-ti=0.05,N=100 

The sets P, Q and M are approximated by polyhedra in the plane with suitable vertices 

uy = (u7,+2): +I =uy2,l(y1 = ‘1-z ! 1 y Icos$ 

y= 0, . . . . SprSp =4 

2x0 
VW =(Vol,V,2): Uol =cosr, %2 

=sinZ!!! 
P 
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Fig. 1 

Fig. 2 

0=1,2 ,..., S&=8 

x,=(x,r,x,*): XS, =lcosF, x,* = Isin= 
m %I 

s=l,2 I..., S,,S,=60 

Figure 1 represents the sets @J : fi E r in the motion of system (4.2) for two different initial positions, 
as indicated by markers. The evader chose the control in a random manner. Figure 2 illustrates the 
motions of system (4.2) if the target set M is given by two squares (a) or three disks (b). 

This research was supported by the Russian Foundation for Basic Research (99-01-00146 and 00-15- 
96057). 
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